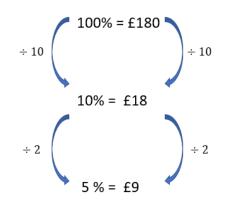


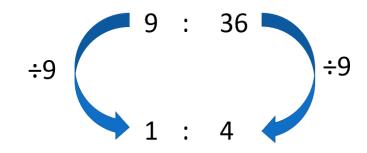
MADANI BOYS SCHOOL YEAR 7 HALF TERM 3


MATHS

Percentages

Find 30% of £520

Find 15% of £120



10% + 5 % = £18 + £9

15 % = £27

Ratio

Simplifying Ratio: The Golden Rule: Divide both by the highest common factor

The ratio of apples to bananas is 4:3

How many apples are there? How many bananas are there?

appies	арріеѕ	арріеѕ	арріеѕ	Jananas	Dallalles	Deliminas	
Apples	Apples	Apples	''	Bananas	Bananas	Bananas	There could be 16 apples: 12 bananas
4	4	4	4	4	4	4	

Apples	Apples	Apples	Apples	Bananas	Bananas	Bananas
10	10	10	10	1.0	10	10

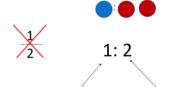
Converting ration to Fractions

Converting Ratio to Fractions

3

Converting ratios to fractions: The golden rule!

denominator. (Bottom number.)


The ratio numbers are your new numerators (top numbers).

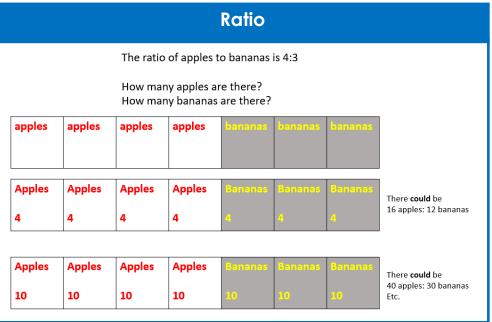
Which deal is the best value?

Eat Fresh

2 for 68p

 $68p \div 2 = 34p \, each$

price per item = total cost ÷ quantity


There could be

40 apples: 30 bananas

MADANI BOYS SCHOOL YEAR 8 HALF TERM 3

MATHS

Simple Interest

Example: You invest £300 at an interest rate of 4% per year.

Simple interest 4% of 300 = 12, so it increases by £12 per year.	Value of investment after 1 year	Value of investment after 2 years	Value of investment after 3 years	Quick way of calculating the new value of the investment after 3 years
£300	£312	£ 324	£336	300 + 36
+12	+12		+12	

Length:

Direct proportion: Best buys

Which deal is the best value?

crisps

 $96p \div 3 = 32p \, each$

CHEAPES

Max-Mart

price per item = total cost ÷ quantity

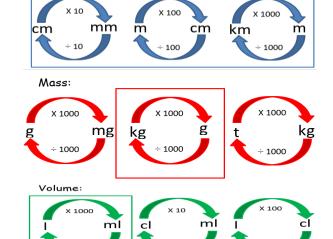
Reverse Percentages

I go to a sale. I see an item that says 20% off. It is now £400. What was the full price of the item?

Firstly, lets write this scenario out mathematically.

The full price -20% = 80%

100% - 20% = £400

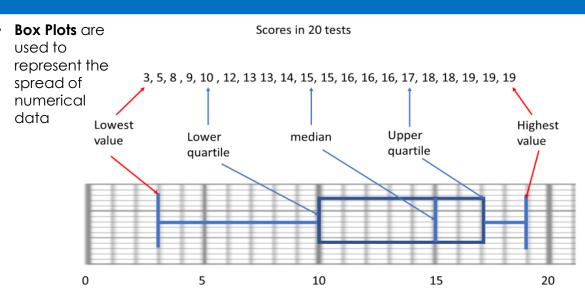

80% = £400

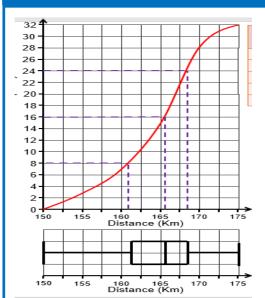
1%= £5

100% = £500

In other words, 100% of the price, the full price, is equal to £500.

Metric Conversions




MADANI BOYS SCHOOL YEAR 9 HALF TERM 3

MATHS

Box Plots

Cumulative Frequency Graphs

Cumulative frequency graphs allow us to estimate the lower quartile, upper quartile and median of grouped frequency data (see the dotted lines on the graph.)

Distance, d Km	Freq.	Cumulative Frequency
150 < d ≤ 155	3	3
155 < d ≤ 160	4	7
160 <d 165<="" td="" ≤=""><td>8</td><td>15</td></d>	8	15
165 < d ≤ 170	13	28
170 < d ≤ 175	4	 32

The co-ordinates are taken from the upper limit and cumulative frequency of each interval. So the last co-ordinate is (175.32)

Mean, Median, Mode & Range

For the data points: 3, 3, 3, 7, 8, 9, 9

- The **mode** is the most common data point: 3
- The **median** is the middle number (Once you've lined them up from smallest to largest): 7
- There are three numbers to the left of 7 and three numbers to the right, so 7 is the median.
- To find the **mean**, you divide the total by the number of data points:

$$3+3+3+7+9+10+14=42$$

 $42 \div 7 = 6$, so the mean is 6.

- The mean is the total shared between each data point. In the example above, it is like saying that 7 friends have a total of £42, so they each have about £6 on average. However it does not tell us how the much the amounts vary from each other. For that we need to find the range.
- The range is the difference between the smallest and largest data point: 9 - 3 = 6 so the range is 6.
- The **interquartile range** is the difference between the upper auartile and the lower quartile.
- The range and interquartile range are not averages, so they do not give us a sense of the size of the numbers. They are measures of how spread out the data is: the lower the range and the interquartile range, the more consistent the numbers are.

